Friday, October 28, 2016

3 Tydperk Bewegende Gemiddelde Voorspelling

Bewegende gemiddelde vooruitskatting Inleiding. Soos jy kan raai ons is op soek na 'n paar van die mees primitiewe benaderings tot vooruitskatting. Maar hopelik dit is ten minste 'n waardevolle inleiding tot sommige van die rekenaar kwessies wat verband hou met die implementering van voorspellings in sigblaaie. In dié opsig sal ons voortgaan deur te begin by die begin en begin werk met bewegende gemiddelde voorspellings. Bewegende gemiddelde voorspellings. Almal is vertroud met bewegende gemiddelde voorspellings ongeag of hulle glo hulle is. Alle kollege studente doen dit al die tyd. Dink aan jou toetspunte in 'n kursus waar jy gaan vier toetse gedurende die semester het. Kom ons neem aan jy het 'n 85 op jou eerste toets. Wat sou jy voorspel vir jou tweede toetstelling Wat dink jy jou onderwyser sou Ongeag voorspel vir jou volgende toetstelling Wat dink jy jou vriende kan voorspel vir jou volgende toetstelling Wat dink jy jou ouers kan voorspel vir jou volgende toetstelling al die blabbing jy kan doen om jou vriende en ouers, hulle en jou onderwyser is baie geneig om te verwag dat jy iets kry in die gebied van die 85 wat jy nou net gekry. Wel, nou kan aanneem dat ten spyte van jou self-bevordering van jou vriende, jy oorskat jouself en vind jy minder vir die tweede toets te studeer en so kry jy 'n 73. Nou wat is al die betrokkenes en onbekommerd gaan verwag jy sal op jou derde toets te kry Daar is twee baie waarskynlik benaderings vir hulle om 'n skatting, ongeag of hulle dit sal met julle deel te ontwikkel. Hulle mag sê om hulself, quotThis man is altyd waai rook oor sy intelligensie. Hes gaan na 'n ander 73 as hes gelukkig te kry. Miskien sal die ouers probeer meer ondersteunend te wees en sê, quotWell, tot dusver youve gekry 'n 85 en 'n 73, so miskien moet jy dink oor hoe om oor 'n (85 73) / 2 79. Ek weet nie, miskien as jy minder gedoen partytjies en werent swaaiende die mol al oor die plek en as jy begin doen 'n baie meer studeer jy kan kry 'n hoër score. quot Beide van hierdie vooruitskattings eintlik bewegende gemiddelde voorspellings. Die eerste is net met jou mees onlangse telling tot jou toekomstige prestasie te voorspel. Dit staan ​​bekend as 'n bewegende gemiddelde vooruitskatting gebruik van een tydperk van data. Die tweede is ook 'n bewegende gemiddelde voorspelling, maar die gebruik van twee periodes van data. Kom ons neem aan dat al hierdie mense breker op jou groot gees soort het dronk jy af en jy besluit om goed te doen op die derde toets vir jou eie redes en 'n hoër telling in die voorkant van jou quotalliesquot sit. Jy neem die toets en jou telling is eintlik 'n 89 Almal, insluitende jouself, is beïndruk. So nou het jy die finale toets van die semester kom en soos gewoonlik jy voel die behoefte om almal te dryf in die maak van hul voorspellings oor hoe sal jy doen op die laaste toets. Wel, hopelik sien jy die patroon. Nou, hopelik kan jy die patroon te sien. Wat glo jy is die mees akkurate Whistle Terwyl ons werk. Nou moet ons terugkeer na ons nuwe skoonmaak maatskappy wat begin is deur jou vervreemde halfsuster genoem Whistle Terwyl ons werk. Jy het 'n paar verkope verlede data wat deur die volgende artikel uit 'n sigblad. Ons bied eers die data vir 'n drie tydperk bewegende gemiddelde skatting. Die inskrywing vir sel C6 moet wees Nou kan jy hierdie sel formule af na die ander selle C7 kopieer deur C11. Let op hoe die gemiddelde beweeg oor die mees onlangse historiese data, maar gebruik presies die drie mees onlangse tye beskikbaar wees vir elke voorspelling. Jy moet ook sien dat ons nie regtig nodig om die voorspellings vir die afgelope tyd maak om ons mees onlangse voorspelling ontwikkel. Dit is beslis anders as die eksponensiële gladstryking model. Ive ingesluit die quotpast predictionsquot omdat ons dit sal gebruik in die volgende webblad om voorspellingsgeldigheid meet. Nou wil ek die analoog resultate aan te bied vir 'n periode van twee bewegende gemiddelde skatting. Die inskrywing vir sel C5 moet wees Nou kan jy hierdie sel formule af na die ander selle C6 kopieer deur C11. Let op hoe nou net die twee mees onlangse stukke historiese data gebruik vir elke voorspelling. Weereens het ek die quotpast predictionsquot vir illustratiewe doeleindes en vir latere gebruik in vooruitskatting validering ingesluit. Sommige ander dinge wat van belang om te let. Vir 'n m-tydperk bewegende gemiddelde voorspelling net die m mees onlangse data waardes word gebruik om die voorspelling te maak. Niks anders is nodig. Vir 'n m-tydperk bewegende gemiddelde voorspelling, wanneer quotpast predictionsquot, agterkom dat die eerste voorspelling kom in periode m 1. Beide van hierdie kwessies sal baie belangrik wees wanneer ons ons kode te ontwikkel. Die ontwikkeling van die bewegende gemiddelde funksie. Nou moet ons die kode vir die bewegende gemiddelde voorspelling dat meer buigsaam kan word ontwikkel. Die kode volg. Let daarop dat die insette is vir die aantal periodes wat jy wil gebruik in die vooruitsig en die verskeidenheid van historiese waardes. Jy kan dit stoor in watter werkboek wat jy wil. Funksie MovingAverage (Historiese, NumberOfPeriods) as 'n enkele verkondig en inisialisering veranderlikes Dim punt Soos Variant Dim Counter As Integer Dim Akkumulasie as 'n enkele Dim HistoricalSize As Integer Inisialiseer veranderlikes Counter 1 Akkumulasie 0 bepaling van die grootte van Historiese skikking HistoricalSize Historical. Count Vir Counter 1 Om NumberOfPeriods opbou van die toepaslike aantal mees onlangse voorheen waargeneem waardes Akkumulasie Akkumulasie Historiese (HistoricalSize - NumberOfPeriods toonbank) MovingAverage Akkumulasie / NumberOfPeriods die kode sal in die klas verduidelik. Jy wil die funksie te posisioneer op die sigblad sodat die resultaat van die berekening verskyn waar dit wil die following.3 Verstaan ​​Voorspelling vlakke en metodes wat jy kan beide detail (enkele item) voorspellings en opsomming (produk lyn) voorspel dat die produk weerspieël genereer vraag patrone. Die stelsel ontleed verlede verkope voorspellings bereken deur gebruik te maak van 12 vooruitskatting metodes. Die voorspellings sluit detail inligting op die item vlak en 'n hoër vlak inligting oor 'n tak of die maatskappy as 'n geheel. 3.1 Voorspelling Performance Evalueringskriteria Afhangende van die keuse van die verwerking opsies en op tendense en patrone in die verkope data, sommige voorspelling metodes beter presteer as ander vir 'n gegewe historiese datastel. 'N vooruitskatting metode wat geskik is vir 'n produk kan nie geskik is vir 'n ander produk. Jy mag vind dat 'n vooruitskatting metode wat goeie resultate lewer in 'n stadium van 'n produk se lewensiklus toepaslike deur die hele lewensiklus bly. Jy kan kies tussen twee metodes om die huidige prestasie van die voorspelling metodes te evalueer: Persentasie van akkuraatheid (POA). Beteken absolute afwyking (MAD). Beide van hierdie prestasie-evaluering metodes vereis historiese verkope data vir 'n tydperk wat jy spesifiseer. Hierdie tydperk staan ​​bekend as 'n holdout tydperk of periode van beste passing. Die data in hierdie tydperk word gebruik as die grondslag vir die aanbeveling wat vooruitskatting metode om te gebruik in die maak van die volgende voorspelling projeksie. Hierdie aanbeveling is spesifiek vir elke produk en kan van een voorspelling generasie na die volgende. 3.1.1 beste pas by die stelsel beveel die beste passing voorspelling deur die toepassing van die gekose voorspelling metodes om die verlede verkope orde geskiedenis en vergelyk die voorspelling simulasie van die werklike geskiedenis. As jy 'n beste passing voorspelling genereer, die stelsel vergelyk werklike verkope orde geskiedenis om voorspellings vir 'n spesifieke tydperk en bere hoe akkuraat elke verskillende vooruitskatting metode voorspel verkope. Toe beveel die stelsel die mees akkurate voorspelling as die beste passing. Dit grafiese illustreer beste passing voorspellings: Figuur 3-1 Beste pas voorspel Die stelsel maak gebruik van hierdie reeks stappe om die beste passing te bepaal: Gebruik elke gespesifiseerde metode om 'n voorspelling vir die holdout tydperk na te boots. Vergelyk werklike verkope aan die gesimuleerde voorspellings vir die holdout tydperk. Bereken die POA of die MAD om te bepaal watter vooruitskatting metode die meeste ooreenstem met die verlede werklike verkope. Die stelsel maak gebruik van óf POA of mal, gebaseer op die verwerking opsies wat jy kies. Beveel die beste passing voorspelling deur die POA wat die naaste aan 100 persent (bo of onder) of die MAD wat die naaste aan nul. 3.2 Vooruitskatting Metodes JD Edwards EnterpriseOne Voorspelling Bestuur gebruik 12 metodes vir kwantitatiewe vooruitskatting en dui aan watter metode bied die beste geskik is vir die voorspelling situasie. Hierdie afdeling bespreek: Metode 1: Persentasie teenoor verlede jaar. Metode 2: Bereken persent teenoor verlede jaar. Metode 3: verlede jaar tot vanjaar. Metode 4: Moving Gemiddelde. Metode 5: Lineêre benadering. Metode 6: kleinstekwadrate-regressielyn. Metode 7: tweede graad benadering. Metode 8: buigbare metode. Metode 9: Geweegde bewegende gemiddelde. Metode 10: Lineêre Smoothing. Metode 11: Eksponensiële Smoothing. Metode 12: Eksponensiële Smoothing met Trend en Seisoenaliteit. Spesifiseer die metode wat jy wil gebruik in die verwerking opsies vir die voorspelling Generation program (R34650). Die meeste van hierdie metodes te voorsien beperkte beheer. Byvoorbeeld, kan die gewig geplaas op onlangse historiese data of die datum bereik van historiese data wat gebruik word in die berekeninge word bepaal deur jou. Die voorbeelde in die handleiding dui die prosedure te kan uitvoer vir elk van die beskikbare voorspelling metodes, gegee 'n identiese stel historiese data. Die metode voorbeelde in die gids gebruik deel van of al hierdie datastelle wat historiese data van die afgelope twee jaar. Die voorspelling projeksie gaan in die volgende jaar. Dit verkope geskiedenis data is stabiel met klein seisoenale styging in Julie en Desember. Hierdie patroon is kenmerkend van 'n volwasse produk wat dalk nader veroudering. 3.2.1 Metode 1: Persentasie teenoor verlede jaar Hierdie metode maak gebruik van die persent meer as verlede jaar formule aan elke voorspelling tydperk deur die gespesifiseerde persentasie toename of afname vermeerder. Om die vraag te voorspel, hierdie metode vereis dat die getal periodes vir die beste passing plus een jaar van verkope geskiedenis. Hierdie metode is nuttig om die vraag na seisoenale items met groei of afname voorspel. 3.2.1.1 Voorbeeld: Metode 1: persent oor verlede jaar het die persent meer as verlede jaar formule vermeerder verkope data van die vorige jaar met 'n faktor wat jy spesifiseer en dan projekte wat lei oor die volgende jaar. Hierdie metode dalk wees bruikbare in begrotings te boots die invloed van 'n bepaalde groeikoers of wanneer verkope geskiedenis het 'n beduidende seisoenale komponent. Voorspelling spesifikasies: Vermenigvuldiging faktor. Byvoorbeeld, spesifiseer 110 in die verwerking opsie om die vorige jaar verkope geskiedenis data te verhoog met 10 persent. Vereis verkope geskiedenis: Een jaar vir die berekening van die voorspelling, plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (tydperke van beste passing) wat jy spesifiseer. Hierdie tabel is geskiedenis wat in die vooruitsig berekening: Februarie voorspel gelyk 117 keer 1.1 128,7 afgerond tot 129. Maart voorspel gelyk 115 keer 1.1 126,5 afgerond tot 127. 3.2.2 Metode 2: Bereken persent teenoor verlede jaar hierdie metode gebruik die berekende persent oor verlede jaar formule om die verlede verkope van vermelde tydperke te vergelyk met verkope van dieselfde tydperke van die vorige jaar. Die stelsel bepaal 'n persentasie toename of afname, en dan vermenigvuldig elke tydperk deur die persentasie die voorspelling te bepaal. Om die vraag te voorspel, hierdie metode vereis dat die aantal periodes van verkope orde geskiedenis plus een jaar van verkope geskiedenis. Hierdie metode is nuttig om kort vraag term vir seisoenale items met groei of afname voorspel. 3.2.2.1 Voorbeeld: Metode 2: Bereken persent teenoor verlede jaar die berekende Persent teenoor verlede jaar formule vermeerder verkope data van die vorige jaar met 'n faktor wat bereken word deur die stelsel, en dan projekteer dat resultaat vir die volgende jaar. Hierdie metode dalk nuttig in projekteer die invloed van die uitbreiding van die onlangse groeikoers vir 'n produk in die volgende jaar, terwyl die behoud van 'n seisoenale patroon wat in die verkope geskiedenis is nie. Voorspelling spesifikasies: Range van verkope geskiedenis om te gebruik in die berekening van die groeikoers. Byvoorbeeld, spesifiseer N gelyk 4 in die verwerking opsie om verkope geskiedenis vergelyk vir die mees onlangse vier tydperke vir diegene dieselfde vier tydperke van die vorige jaar. Gebruik die berekende verhouding tot die projeksie te maak vir die volgende jaar. Vereis verkope geskiedenis: Een jaar vir die berekening van die voorspelling plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (tydperke van beste passing). Hierdie tabel is geskiedenis wat in die vooruitsig berekening, gegewe N 4: Februarie voorspel gelyk 117 keer 0,9766 114,26 afgerond tot 114. Maart voorspel gelyk 115 keer 0,9766 112,31 afgerond tot 112. 3.2.3 Metode 3: verlede jaar tot die Jaar Die metode gebruik laaste jaar verkope vir die volgende jaar voorspel. Om die vraag te voorspel, hierdie metode vereis dat die aantal periodes beste passing plus een jaar van verkope orde geskiedenis. Hierdie metode is nuttig om die vraag na volwasse produkte met die vraag vlak of seisoenale vraag sonder 'n tendens voorspel. 3.2.3.1 Voorbeeld: Metode 3: verlede jaar tot vanjaar het die verlede jaar tot vanjaar se Formule kopieë verkoop data van die vorige jaar tot die volgende jaar. Hierdie metode dalk nuttig in die begroting om verkope te boots by die huidige vlak wees. Die produk is volwasse en het geen tendens oor die lang termyn, maar 'n beduidende seisoenale vraag patroon mag bestaan. Voorspelling spesifikasies: Geen. Vereis verkope geskiedenis: Een jaar vir die berekening van die voorspelling plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (tydperke van beste passing). Hierdie tabel is geskiedenis wat in die vooruitsig berekening: Januarie voorspel gelyk Januarie verlede jaar met 'n voorspelling van 128. Februarie voorspel gelyk Februarie verlede jaar met 'n voorspelling waarde van 117. Maart voorspel gelyk Maart verlede jaar met 'n voorspelling waarde van 115. 3.2.4 metode 4: Moving Gemiddelde Hierdie metode maak gebruik van die bewegende gemiddelde formule om die gespesifiseerde aantal periodes gemiddeld tot die volgende tydperk projekteer. Jy moet herbereken dit dikwels (maandeliks, of ten minste kwartaalliks) om te besin veranderende vraag vlak. Om die vraag te voorspel, hierdie metode vereis dat die aantal periodes beste passing plus die aantal periodes van verkope orde geskiedenis. Hierdie metode is nuttig om die vraag na volwasse produkte sonder 'n tendens voorspel. 3.2.4.1 Voorbeeld: Metode 4: Moving Gemiddelde bewegende gemiddelde (MA) is 'n gewilde metode vir gemiddeld die resultate van onlangse verkope geskiedenis om 'n projeksie vir die kort termyn te bepaal. Die MA-vooruitskatting metode loop agter tendense. Voorspelling vooroordeel en sistematiese foute kom voor wanneer die produk verkoop geskiedenis uitbeeld sterk tendens of seisoenale patrone. Hierdie metode werk beter vir 'n kort reeks voorspellings van volwasse produkte as vir produkte wat in die groei of veroudering stadiums van die lewensiklus. Voorspel spesifikasies: N is gelyk aan die aantal periodes van verkope geskiedenis om te gebruik in die vooruitsig berekening. Byvoorbeeld, spesifiseer N 4 in die opsie verwerking tot die mees onlangse vier tydperke gebruik as die grondslag vir die projeksie in die volgende tydperk. 'N Groot waarde vir N (soos 12) vereis meer verkope geskiedenis. Dit lei tot 'n stabiele vooruitsig, maar is traag om skofte te erken in die vlak van verkope. Aan die ander kant, 'n klein waarde vir N (soos 3) is vinniger om te reageer op veranderinge in die vlak van verkope, maar die voorspelling kan so wyd dat produksie nie kan reageer op die verskille wissel. Vereis verkope geskiedenis: N plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (tydperke van beste passing). Hierdie tabel is geskiedenis wat in die vooruitsig berekening: Februarie voorspel gelyk (114 119 137 125) / 4 123,75 afgerond tot 124. Maart voorspel gelyk (119 137 125 124) / 4 126,25 afgerond tot 126. 3.2.5 Metode 5: Lineêre die aanpassing hierdie metode maak gebruik van die Lineêre die aanpassing formule om 'n tendens van die aantal periodes van verkope orde geskiedenis bereken en om hierdie tendens om die voorspelling te projekteer. Jy moet die tendens maandelikse herbereken om veranderinge in tendense te bespeur. Hierdie metode vereis dat die aantal periodes van beste passing plus die aantal vermelde tydperke van verkope orde geskiedenis. Hierdie metode is nuttig om die vraag na nuwe produkte, of produkte met 'n steeds positief of negatief tendense wat nie as gevolg van seisoenale skommelinge voorspel. 3.2.5.1 Voorbeeld: Metode 5: Lineêre die aanpassing Lineêre die aanpassing bereken 'n tendens wat gebaseer is op twee verkope geskiedenis datapunte. Dié twee punte definieer 'n reguit tendens lyn wat geprojekteer in die toekoms. Gebruik hierdie metode met omsigtigheid, want 'n lang reeks voorspellings is aged deur klein veranderinge in net twee datapunte. Voorspel spesifikasies: N is gelyk aan die data punt in verkope geskiedenis wat in vergelyking met die mees onlangse data dui op 'n tendens te identifiseer. Byvoorbeeld, spesifiseer N 4 om die verskil tussen Desember (mees onlangse data) en Augustus te gebruik (vier periodes voor Desember) as die basis vir die berekening van die tendens. Minimum vereiste verkope geskiedenis: N plus 1 plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (tydperke van beste passing). Hierdie tabel is geskiedenis wat in die vooruitsig berekening: Januarie voorspel Desember van verlede jaar 1 (Trend) wat 137 is gelyk aan (1 keer 2) 139. Februarie voorspel Desember van verlede jaar 1 (Trend) wat 137 (2 keer 2) 141 gelyk. Maart voorspel Desember van verlede jaar 1 (Trend) wat gelyk 137 (3 keer 2) 143. 3.2.6 metode 6: kleinstekwadrate-regressielyn die kleinstekwadrate regressie (LSR) metode is afgelei van 'n vergelyking beskryf 'n reguit lyn tussen die historiese verkope data en die verloop van tyd. LSR pas 'n lyn om die geselekteerde data sodat die som van die kwadrate van die verskille tussen die werklike verkope datapunte en die regressielyn is tot die minimum beperk. Die voorspelling is 'n projeksie van die reguit lyn in die toekoms. Hierdie metode vereis verkope data geskiedenis vir die tydperk wat deur die aantal periodes beste passing plus die gespesifiseerde aantal historiese data tydperke. Die minimum vereiste is twee historiese data punte. Hierdie metode is nuttig om die vraag te voorspel wanneer 'n lineêre tendens is in die data. 3.2.6.1 Voorbeeld: Metode 6: kleinstekwadrate-regressielyn lineêre regressie, of kleinstekwadrate-regressielyn (LSR), is die gewildste metode vir die identifisering van 'n lineêre neiging in historiese verkope data. Die metode word bereken dat die waardes vir a en b te gebruik in die formule: Hierdie vergelyking beskryf 'n reguit lyn, waar y verkope en X verteenwoordig tyd. Lineêre regressie is traag om draaipunte en stap funksie skofte erken in aanvraag. Lineêre regressie pas 'n reguit lyn na die data, selfs wanneer die data is seisoenaal of beter beskryf deur 'n kromme. Wanneer verkope geskiedenis data volg op 'n kurwe of 'n sterk seisoenale patroon, voorspel vooroordeel en sistematiese foute. Voorspel spesifikasies: N is gelyk aan die tydperke van verkope geskiedenis wat gebruik sal word in die berekening van die waardes vir a en b. Byvoorbeeld, spesifiseer N 4 tot die geskiedenis van September gebruik tot Desember as die basis vir die berekening. Wanneer data beskikbaar is, sal 'n groter N (soos N 24) gewoonlik gebruik word. LSR definieer 'n lyn vir so min as twee datapunte. Vir hierdie voorbeeld, 'n klein waarde vir N (N 4) is gekies om die handleiding berekeninge wat nodig is om die resultate te verifieer verminder. Minimum vereiste verkope geskiedenis: N tydperke plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (tydperke van beste passing). Hierdie tabel is geskiedenis wat in die vooruitsig berekening: Maart voorspel gelyk 119,5 (7 keer 2.3) 135,6 afgerond tot 136. 3.2.7 Metode 7: tweede graad benadering tot die voorspelling projekteer, hierdie metode maak gebruik van die tweede graad aanpassing formule om 'n kurwe plot wat gebaseer is op die aantal periodes van verkope geskiedenis. Hierdie metode vereis dat die aantal periodes beste passing plus die aantal periodes van verkope orde geskiedenis maal drie. Hierdie metode is nie bruikbaar vir die vraag na 'n tydperk langtermyn voorspel. 3.2.7.1 Voorbeeld: Metode 7: tweede graad aanpassing lineêre regressie bepaal waardes vir a en b in die vooruitsig formule Y A B X met die doel van pas 'n reguit lyn na die verkope geskiedenis data. Tweede graad benadering is soortgelyk, maar hierdie metode bepaal waardes vir a, b, en c in die hierdie voorspelling formule: Y A B X c X 2 Die doel van hierdie metode is om 'n kurwe na die verkope geskiedenis data te pas. Hierdie metode is nuttig wanneer 'n produk is in die oorgang tussen lewensiklus stadiums. Byvoorbeeld, wanneer 'n nuwe produk beweeg van inleiding tot groeistadiums, kan die verkope tendens versnel. As gevolg van die tweede orde termyn, kan die voorspelling vinnig nader oneindigheid of daal tot nul (afhangende van of koëffisiënt c positief of negatief). Hierdie metode is net nuttig in die kort termyn. Voorspelling spesifikasies: die formule te vind a, b, en c aan 'n kromme presies drie punte aan te pas. Jy spesifiseer N, die aantal tydperke van data te versamel in elk van die drie punte. In hierdie voorbeeld is N 3. werklike verkope data vir April tot Junie gekombineer in die eerste punt, Q1. Julie tot September word bymekaar getel om die 2de kwartaal skep, en Oktober tot Desember som tot Q3. Die kurwe is toegerus om die drie waardes Q1, Q2, en Q3. Vereis verkope geskiedenis: 3 keer n periodes vir die berekening van die voorspelling plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (tydperke van beste passing). Hierdie tabel is geskiedenis wat in die vooruitsig berekening: Q0 (Jan) (Februarie) (Maart) Q1 (April) (Mei) (Junie) wat 125 122 137 384 Q2 gelyk (Julie) (Augustus) (September) wat 140 129 is gelyk aan 131 400 Q3 (Oktober) (November) (Desember) wat gelyk 114 119 137 370 die volgende stap behels die berekening van die drie koëffisiënte a, b, en C om gebruik te word in die voorspelling formule Y AB X c X 2. Q1, Q2, en Q3 word op die grafiese, waar tyd word op die horisontale as. Q1 verteenwoordig totale historiese verkope vir April, Mei en Junie en is geplot op X 1 Q2 ooreenstem met Julie tot September Q3 ooreenstem met Oktober tot Desember en Q4 verteenwoordig Januarie tot Maart. Dit grafiese illustreer die plot van Q1, Q2, Q3 en Q4 vir die tweede graad benadering: Figuur 3-2 Plot Q1, Q2, Q3 en Q4 vir die tweede graad benadering Drie vergelykings beskryf die drie punte op die grafiek: (1) Q1 'n bX CX 2 waar X 1 (Q1 ABC) (2) Q2 n bX CX 2 waar X 2 (2de kwartaal 'n 2b 4C) (3) Q3 n bX CX 2 waar X 3 (V3 n 3b 9c) Los die drie vergelykings gelyktydig om b, a, en c te vind: Trek vergelyking 1 (1) van vergelyking 2 (2) en op te los vir b: (2) uitvoering maak (1) Q2 uitvoering maak Q1 b 3c b (Q2 uitvoering maak Q1) uitvoering maak 3c Plaasvervanger hierdie vergelyking vir b in vergelyking (3): (3) Q3 n 3 (Q2 uitvoering maak Q1) uitvoering maak 3c 9c n Q3 uitvoering maak 3 (Q2 uitvoering maak Q1) Ten slotte, vervang hierdie vergelykings vir a en b in vergelyking (1): (1) Q3 ndash 3 (Q2 uitvoering maak Q1) (Q2 uitvoering maak Q1) uitvoering maak 3c c Q1 c (Q3 uitvoering maak Q2) (Q1 uitvoering maak Q2) / 2 Die tweede graad aanpassing metode bereken a, b, en c soos volg: 'n Q3 uitvoering maak 3 (Q2 ndash Q1) 370 ndash 3 (400 ndash 384) 370 ndash 3 (16) 322 b (Q2 uitvoering maak Q1) ndash3c (400 ndash 384) uitvoering maak (3 keer ndash23) 16 69 85 c (Q3 uitvoering maak Q2) (Q1 uitvoering maak Q2) / 2 (370 ndash 400) (384 ndash 400) / 2 ndash23 Dit is 'n berekening van die tweede graad benadering vooruitsig: Y 'n bX CX 2 322 85 X (ndash23) (X 2) Wanneer X 4, K4 322 340 ndash 368 294. Die voorspelling gelyk 294/3 98 per periode. Wanneer X 5, V5 322 425 ndash 575 172. Die voorspelling is gelyk 172/3 58,33 afgerond tot 57 per periode. Wanneer X 6, V6 322 510 ndash 828 4. Die voorspelling is gelyk aan 4/3 1.33 afgerond tot 1 per periode. Dit is die vooruitsig vir die volgende jaar, verlede jaar tot hierdie jaar: 3.2.8 Metode 8: Veelsydige Hierdie metode maak dit moontlik om die beste passing aantal periodes van verkope orde geskiedenis wat begin N maande voor die vooruitsig begin datum kies, en om pas 'n persentasie verhoging of vermenigvuldiging faktor waarmee die voorspelling verander afneem. Hierdie metode is soortgelyk aan Metode 1, persent oor verlede jaar, behalwe dat jy die aantal periodes wat jy gebruik as die basis kan spesifiseer. Afhangende van wat jy as N kies, hierdie metode vereis tydperke beste passing plus die aantal periodes van verkope data wat aangedui. Hierdie metode is nuttig om die vraag na 'n beplande ontwikkeling voorspel. 3.2.8.1 Voorbeeld: Metode 8: buigbare metode Die buigbare metode (persent oor N maande voor) is soortgelyk aan Metode 1, persent oor verlede jaar. Beide metodes vermeerder verkope data uit 'n vorige tydperk met 'n faktor wat deur julle, en dan projek wat lei na die toekoms. In die persent meer as verlede jaar metode, is die projeksie gebaseer op data van die dieselfde tydperk in die vorige jaar. Jy kan ook die buigbare metode gebruik om 'n tydperk, ander as in dieselfde tydperk in die vorige jaar spesifiseer, te gebruik as die basis vir die berekening. Vermenigvuldigingsfaktor. Byvoorbeeld, spesifiseer 110 in die verwerking opsie om vorige verkope geskiedenis data te verhoog met 10 persent. Basistydperk. Byvoorbeeld, N 4 veroorsaak dat die eerste skatting moet gebaseer wees op die verkope data in September verlede jaar. Minimum vereiste verkope geskiedenis: die aantal periodes terug na die basis tydperk plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (tydperke van beste passing). Hierdie tabel is geskiedenis wat in die vooruitsig berekening: 3.2.9 Metode 9: Geweegde bewegende gemiddelde geweegde bewegende gemiddelde formule is soortgelyk aan Metode 4, bewegende gemiddelde formule, want dit gemiddeldes die vorige maande verkope geskiedenis na die volgende maande verkope geskiedenis projekteer. Maar met hierdie formule kan jy gewigte toewys vir elk van die vorige tydperke. Hierdie metode vereis dat die getal gekies geweegde tydperke plus die aantal periodes beste passing data. Soortgelyk aan bewegende gemiddelde, hierdie metode loop agter tendense vraag, sodat hierdie metode word nie aanbeveel vir produkte met 'n sterk tendense of seisoenaliteit. Hierdie metode is nuttig om die vraag na volwasse produkte met die vraag wat relatief vlak voorspel. 3.2.9.1 Voorbeeld: Metode 9: Geweegde bewegende gemiddelde geweegde metode bewegende gemiddelde (WBA) is soortgelyk aan Metode 4, bewegende gemiddelde (MA). Jy kan egter ongelyke gewigte toewys aan die historiese data by die gebruik van WBG. Die metode bereken 'n geweegde gemiddelde van die afgelope verkope geskiedenis te kom by 'n projeksie vir die kort termyn. Meer onlangse data word gewoonlik toegeken 'n groter gewig as ouer data, sodat WBG is meer ontvanklik vir skofte in die vlak van verkope. Maar voorspelling vooroordeel en sistematiese foute kom voor wanneer die produk verkoop geskiedenis uitbeeld sterk tendense of seisoenale patrone. Hierdie metode werk beter vir 'n kort reeks voorspellings van volwasse produkte as vir produkte in die groei of veroudering stadiums van die lewensiklus. Die aantal periodes van verkope geskiedenis (N) te gebruik in die vooruitsig berekening. Byvoorbeeld, spesifiseer N 4 in die opsie verwerking tot die mees onlangse vier tydperke gebruik as die grondslag vir die projeksie in die volgende tydperk. 'N Groot waarde vir N (soos 12) vereis meer verkope geskiedenis. So 'n waarde resultate in 'n stabiele vooruitsig, maar dit is stadig om skofte te erken in die vlak van verkope. Aan die ander kant, 'n klein waarde vir N (soos 3) reageer vinniger te verskuiwings in die vlak van verkope, maar die voorspelling kan so wyd dat produksie kan nie reageer op die verskille wissel. Die gewig wat aan elk van die historiese data tydperke. Die opgedra gewigte moet totaal 1.00. Byvoorbeeld, wanneer n 4, gewigte van 0.50, 0.25, 0.15, en 0.10 toewys met die mees onlangse data ontvangs van die grootste gewig. Minimum vereiste verkope geskiedenis: N plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (tydperke van beste passing). Hierdie tabel is geskiedenis wat in die vooruitsig berekening: Januarie voorspel gelyk (131 keer 0.10) (114 keer 0,15) (119 keer 0,25) (137 keer 0.50) / (0.10 0.15 0.25 0.50) 128,45 afgerond tot 128. Februarie voorspel gelyk (114 tye 0.10) (119 keer 0,15) (137 keer 0,25) (128 keer 0.50) / 1 127,5 afgerond tot 128. Maart voorspel gelyk (119 keer 0.10) (137 keer 0,15) (128 keer 0,25) (128 keer 0.50) / 1 128,45 afgerond tot 128. 3.2.10 metode 10: Lineêre Smoothing Hierdie metode bereken 'n geweegde gemiddelde van die verlede verkope data. In die berekening van hierdie metode gebruik die aantal periodes van verkope orde geskiedenis (van 1 tot 12) wat aangedui in die opsie verwerking. Die stelsel maak gebruik van 'n wiskundige vordering om data in die reeks van die eerste (minste gewig) tot die finale (die meeste gewig) weeg. Dan projekte die stelsel hierdie inligting aan elke tydperk in die vooruitsig. Hierdie metode vereis dat die maande beste passing plus die verkope orde geskiedenis vir die aantal periodes wat vermeld in die opsie verwerking. 3.2.10.1 Voorbeeld: Metode 10: Lineêre Smoothing Hierdie metode is soortgelyk aan Metode 9, WBG. Maar in plaas van na willekeur toeken gewigte aan die historiese data, 'n formule word gebruik om gewig wat lineêr afneem toewys en som tot 1.00. Die metode bereken dan 'n geweegde gemiddelde van die afgelope verkope geskiedenis te kom by 'n projeksie vir die kort termyn. Soos alle lineêre bewegende gemiddelde vooruitskatting tegnieke, voorspelling vooroordeel en sistematiese foute kom voor wanneer die produk verkoop geskiedenis uitbeeld sterk tendens of seisoenale patrone. Hierdie metode werk beter vir 'n kort reeks voorspellings van volwasse produkte as vir produkte in die groei of veroudering stadiums van die lewensiklus. N is gelyk aan die aantal periodes van verkope geskiedenis om te gebruik in die vooruitsig berekening. Byvoorbeeld, spesifiseer N gelyk 4 in die verwerking opsie om die mees onlangse vier tydperke gebruik as die grondslag vir die projeksie in die volgende tydperk. Die stelsel ken outomaties die gewigte na die historiese data wat lineêr afneem en som tot 1.00. Byvoorbeeld, wanneer n gelyk 4, die stelsel wys gewigte van 0.4, 0.3, 0.2, en 0.1, met die mees onlangse data ontvangs van die grootste gewig. Minimum vereiste verkope geskiedenis: N plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (tydperke van beste passing). Hierdie tabel is geskiedenis wat in die vooruitsig berekening: 3.2.11 Metode 11: Eksponensiële Smoothing hierdie metode bereken 'n reëlmatige gemiddelde, wat 'n skatting wat die algemene vlak van verkope oor die gekose historiese data tydperke raak. Hierdie metode vereis verkope data geskiedenis vir die tydperk wat deur die aantal periodes beste passing plus die aantal historiese data tydperke wat vermeld. Die minimum vereiste is twee historiese data tydperke. Hierdie metode is nuttig om die vraag te voorspel wanneer daar geen lineêre tendens is in die data. 3.2.11.1 Voorbeeld: Metode 11: Eksponensiële Smoothing Hierdie metode is soortgelyk aan Metode 10, Lineêre Smoothing. In Lineêre Smoothing, die stelsel wys gewigte wat lineêr afneem om die historiese data. In Eksponensiële Smoothing, die stelsel wys gewigte wat eksponensieel verval. Die vergelyking vir Eksponensiële Smoothing voorspelling is: Voorspelling alfa (Vorige werklike verkope) (1 ndashalpha) (vorige skatting) Die voorspelling is 'n geweegde gemiddeld van die werklike verkope van die vorige tydperk en die voorspelling van die vorige tydperk. Alpha is die gewig wat toegepas word om die werklike verkope vir die vorige tydperk. (1 uitvoering maak alfa) is die gewig wat toegepas word om die voorspelling vir die vorige tydperk. Waardes vir Alpha reeks 0-1 en val gewoonlik tussen 0.1 en 0.4. Die som van die gewigte is 1.00 (alfa (1 uitvoering maak alfa) 1). Jy moet 'n waarde vir die glad konstante, Alpha toewys. As jy nie 'n waarde vir die glad konstante hoef te ken, die stelsel bereken 'n veronderstelde waarde wat gebaseer is op die aantal periodes van verkope geskiedenis wat vermeld in die opsie verwerking. Alpha is gelyk aan die smoothing konstante wat gebruik word om die reëlmatige gemiddelde te bereken vir die algemene vlak of omvang van verkope. Waardes vir Alpha wissel van 0 tot 1. N gelyk aan die omvang van verkope geskiedenis data in die berekeninge te sluit. Oor die algemeen, 'n jaar van verkope geskiedenis data is voldoende om die algemene vlak van verkope te skat. Vir hierdie voorbeeld, 'n klein waarde vir N (N 4) is gekies om die handleiding berekeninge wat nodig is om die resultate te verifieer verminder. Eksponensiële Smoothing kan 'n voorspelling wat gebaseer is op so min as een historiese data punt te genereer. Minimum vereiste verkope geskiedenis: N plus die aantal tydperke wat nodig is vir die evaluering van die voorspelling prestasie (tydperke van beste passing). Hierdie tabel is geskiedenis wat in die vooruitsig berekening: 3.2.12 Metode 12: Eksponensiële Smoothing met Trend en Seisoenaliteit hierdie metode bereken 'n tendens, 'n seisoenale indeks, en 'n eksponensieel stryk gemiddelde van die verkope orde geskiedenis. Die stelsel is van toepassing dan 'n projeksie van die tendens om die voorspelling en pas vir die seisoenale indeks. Hierdie metode vereis dat die aantal periodes beste passing plus twee jaar van verkope data, en het groot waarde om items wat beide tendens en seisoenaliteit in die vooruitsig het. Jy kan die alfa en beta faktor betree, of het die stelsel te bereken nie. Alpha en Beta faktore is die glad konstante wat die stelsel gebruik om die reëlmatige gemiddelde te bereken vir die algemene vlak of omvang van verkope (alfa) en die tendens komponent van die voorspelling (beta). 3.2.12.1 Voorbeeld: Metode 12: Eksponensiële Smoothing met Trend en Seisoenaliteit Hierdie metode is soortgelyk aan Metode 11, eksponensiële Smoothing, in die sin dat 'n reëlmatige gemiddelde bereken word. Maar Metode 12 sluit ook 'n term in die vooruitskatting vergelyking met 'n reëlmatige tendens te bereken. Die voorspelling is saamgestel uit 'n reëlmatige gemiddelde wat aangepas vir 'n lineêre tendens. Wanneer vermeld in die opsie verwerking, is die voorspelling ook aangepas vir die seisoen. Alpha is gelyk aan die smoothing konstante wat gebruik word in die berekening van die reëlmatige gemiddelde vir die algemene vlak of omvang van verkope. Waardes vir Alpha wissel van 0 tot 1. Beta is gelyk aan die smoothing konstante wat gebruik word in die berekening van die reëlmatige gemiddelde vir die tendens komponent van die skatting. Waardes vir beta wissel van 0 tot 1. Of 'n seisoenale indeks is van toepassing op die skatting. Alpha en Beta is onafhanklik van mekaar. Hulle hoef nie te som tot 1.0. Minimum vereiste verkope geskiedenis: Een jaar plus die aantal tydperke wat nodig is om voorspellings oor die prestasie (tydperke van beste passing) te evalueer. Wanneer twee of meer jare van historiese data beskikbaar is, die stelsel maak gebruik van twee jaar van data in die berekeninge. Metode 12 gebruik twee Eksponensiële Smoothing vergelykings en 'n eenvoudige gemiddelde tot 'n reëlmatige gemiddelde, 'n reëlmatige tendens, en 'n eenvoudige gemiddelde seisoenale indeks te bereken. 'N eksponensieel stryk gemiddelde: 'n eksponensieel glad tendens: 'n Eenvoudige gemiddelde seisoensindeks: Figuur 3-3 eenvoudige gemiddelde seisoensindeks Die voorspelling word dan bereken word deur die resultate van die drie vergelykings: L is die lengte van seisoenaliteit (L gelyk 12 maande of 52 weke). t is die huidige tydperk. m is die aantal tydperke in die toekoms van die skatting. S is die multiplikatiewe seisoenale aanpassing faktor wat kruip na die toepaslike tydperk. Hierdie tabel lys die geskiedenis wat in die vooruitsig berekening: Hierdie afdeling verskaf 'n oorsig van voorspelling evaluerings en bespreek: Jy kan vooruitskatting metodes kies om soveel as 12 voorspellings vir elke produk te genereer. Elke vooruitskatting metode dalk 'n effens ander projeksie te skep. Wanneer duisende produkte word voorspel, 'n subjektiewe besluit is onprakties met betrekking tot wat voorspel is om te gebruik in die planne vir elke produk. Die stelsel evalueer outomaties prestasie vir elke voorspelling metode wat jy kies en vir elke produk wat jy voorspel. Jy kan kies tussen twee prestasiekriteria: MAD en POA. MAD is 'n maatstaf van voorspelling fout. POA is 'n maatstaf van voorspelling vooroordeel. Beide van hierdie prestasie-evaluering tegnieke vereis werklike verkope geskiedenis data vir 'n tydperk deur jou. Die tydperk van die onlangse geskiedenis gebruik vir evaluering word 'n holdout tydperk of periode van beste passing. Om die prestasie van 'n vooruitskatting metode meet, die stelsel: Gebruik die voorspelling formules om 'n voorspelling vir die historiese holdout tydperk na te boots. Maak 'n vergelyking tussen die werklike verkope data en die gesimuleerde voorspelling vir die holdout tydperk. As jy verskeie voorspelling metodes kies, dieselfde proses vind vir elke metode. Veelvuldige voorspellings word bereken vir die holdout tydperk en in vergelyking met die bekende verkope geskiedenis vir dieselfde tydperk. Die vooruitskatting metode wat die beste wedstryd (beste passing) tussen die voorspelling en die werklike verkope gedurende die holdout tydperk produseer word aanbeveel vir gebruik in die planne. Hierdie aanbeveling is spesifiek vir elke produk en kan elke keer dat jy 'n voorspelling te genereer verander. 3.3.1 Gemiddelde Absolute Afwyking Gemiddelde Absolute Afwyking (MAD) is die gemiddelde (of gemiddelde) van die absolute waardes (of omvang) van die afwykings (of foute) tussen werklike en voorspelde data. MAD is 'n maatstaf van die gemiddelde grootte van foute te verwag, gegewe 'n vooruitskatting metode en data geskiedenis. Omdat absolute waardes word gebruik in die berekening, moenie positiewe foute nie kanselleer negatiewe foute. Wanneer vergelyk verskeie voorspelling metodes, die een met die kleinste MAD is die mees betroubare vir daardie produk vir daardie holdout tydperk. Wanneer die voorspelling is onbevooroordeelde en foute is normaal verdeel, bestaan ​​'n eenvoudige wiskundige verhouding tussen MAD en twee ander algemene maatstawwe van verspreiding, wat gemiddeldes en standaardafwykings Squared Fout is. Byvoorbeeld: MAD (Sigma (Werklike) uitvoering maak (voorspelling)) N standaardafwyking, (Sigma) Cong 1.25 MAD Mean Squared Fout Cong ndashsigma2 dui Hierdie voorbeeld die berekening van MAD vir twee van die voorspelling metodes. Hierdie voorbeeld neem aan dat jy in die verwerking opsie wat die holdout tydperk lengte (tydperke van beste passing) is gelyk aan vyf tydperke vermeld. 3.3.1.1 Metode 1: Laaste Jaar vanjaar Hierdie tabel is geskiedenis wat in die berekening van 'n mal, gegee Periodes van beste passing 5: Gemiddelde Absolute Afwyking gelykes (2 1 20 10 14) / 5 9.4. Op grond van hierdie twee keuses, is die bewegende gemiddelde N 4 metode aanbeveel, want dit het die kleiner MAD, 9.4, vir die gegewe holdout tydperk. Wanneer voorspellings is konsekwent te hoog, voorraad ophoop en voorraad koste styg. In dienste, die grootte van voorspelling foute is gewoonlik meer belangrik as wat voorspel vooroordeel. In die geval van 'n konstante gemiddelde, sal die grootste waarde van m die beste raming van die onderliggende gemiddelde gee. 'N langer tydperk waarneming sal gemiddeld uit die gevolge van variasie. Die doel van die verskaffing van 'n kleiner m is om voorsiening te maak die voorspelling om te reageer op 'n verandering in die onderliggende proses. Om te illustreer, stel ons 'n datastel wat veranderinge in die onderliggende gemiddelde van die tydreeks inkorporeer. Die figuur toon die tyd reeks gebruik ter illustrasie saam met die vraag gemiddelde waaruit die reeks was gegenereer. Die gemiddelde begin as 'n konstante by 10. Vanaf die tyd 21, verhoog dit met 'n eenheid in elke tydperk totdat dit die waarde van 20 ten tye 30. bereik Dan weer konstant raak dit. Die data word gesimuleer deur die byvoeging van die gemiddelde, 'n ewekansige geluid van 'n normale verspreiding met 'n nul gemiddelde en standaardafwyking 3. Die resultate van die simulasie is afgerond tot die naaste heelgetal. Die tabel toon die gesimuleerde Waarnemings wat gebruik word vir die voorbeeld. Wanneer ons die tafel gebruik, moet ons onthou dat op enige gegewe tyd, word slegs die afgelope data bekend. Die raming van die model parameter, vir drie verskillende waardes van m word saam met die gemiddelde van die tydreeks in die figuur hieronder. Die figuur toon die bewegende gemiddelde skatting van die gemiddelde by elke keer en nie die voorspelling. Die vooruitskattings sal die bewegende gemiddelde kurwes skuif na regs deur periodes. Een gevolgtrekking is onmiddellik duidelik uit die figuur. Vir al drie skattings loop die bewegende gemiddelde agter die lineêre tendens, met die lag verhoog met m. Die lag is die afstand tussen die model en die raming in die tydsdimensie. As gevolg van die lag, die bewegende gemiddelde onderskat die waarnemings as die gemiddelde is aan die toeneem. Die vooroordeel van die beramer is die verskil op 'n spesifieke tyd in die gemiddelde waarde van die model en die gemiddelde waarde voorspel deur die bewegende gemiddelde. Die vooroordeel wanneer die gemiddelde is aan die toeneem is negatief. Vir 'n dalende gemiddelde, die vooroordeel is positief. Die vertraging in die tyd en die vooroordeel wat in die raming is funksies van m. Hoe groter die waarde van m. hoe groter die omvang van die lag en vooroordeel. Vir 'n voortdurend toenemende reeks met tendens a. die waardes van die lag en vooroordeel van die beramer van die gemiddelde is in die onderstaande vergelykings. Die voorbeeld krommes stem nie ooreen hierdie vergelykings omdat die voorbeeld model is nie voortdurend aan die toeneem, eerder dit begin as 'n konstante, veranderinge aan 'n tendens en dan weer word konstant. Ook die voorbeeld krommes geraak word deur die lawaai. Die bewegende gemiddelde voorspelling van periodes in die toekoms word verteenwoordig deur die verskuiwing van die kromme na regs. Die lag en vooroordeel te verhoog proporsioneel. Die onderstaande vergelykings dui die lag en vooroordeel van 'n voorspelling tydperke in die toekoms in vergelyking met die model parameters. Weereens, hierdie formules is vir 'n tyd reeks met 'n konstante lineêre tendens. Ons moet nie verbaas wees oor die resultaat wees. Die bewegende gemiddelde beramer is gebaseer op die aanname van 'n konstante gemiddelde, en die voorbeeld het 'n liniêre tendens in die gemiddelde tydens 'n gedeelte van die studietydperk. Sedert real time reeks sal selde presies die aannames van enige model te gehoorsaam, moet ons bereid wees om vir sulke resultate. Ons kan ook aflei uit die figuur dat die variasie van die geraas het die grootste effek vir kleiner m. Die skatting is baie meer wisselvallig vir die bewegende gemiddelde van 5 as die bewegende gemiddelde van 20. Ons het die botsende begeertes te m verhoog die effek van variasie te verminder as gevolg van die geraas, en om m te verminder die voorspelling meer reageer op veranderinge aan te bring in die gemiddelde. Die fout is die verskil tussen die werklike data en die geskatte waarde. As die tyd reeks is werklik 'n konstante waarde van die verwagte waarde van die fout is nul en die variansie van die fout bestaan ​​uit 'n term wat 'n funksie is van en 'n tweede termyn wat die variansie van die geraas,. Die eerste kwartaal is die variansie van die gemiddelde geskatte met 'n monster van m waarnemings, die aanvaarding van die data kom uit 'n bevolking met 'n konstante gemiddelde. Hierdie term word tot die minimum beperk deur m so groot as moontlik. 'N Groot m maak die voorspelling nie reageer op 'n verandering in die onderliggende tydreekse. Die voorspelling reageer op veranderinge aan te bring, wil ons m so klein as moontlik (1), maar dit verhoog die foutvariansie. Praktiese vooruitskatting vereis 'n intermediêre waarde. Vooruitskatting met Excel Die vooruitskatting add-in implemente die bewegende gemiddelde formules. Die voorbeeld hieronder toon die analise wat deur die byvoeging in vir die voorbeeld van die data in kolom B. Die eerste 10 waarnemings word geïndekseer -9 deur 0. In vergelyking met die tabel hierbo, is die tydperk indekse verskuif deur -10. Die eerste tien Waarnemings verskaf die begin waardes vir die beraming en gebruik word om die bewegende gemiddelde vir tydperk 0. Die MA (10) kolom (C) toon die berekende bewegende gemiddeldes te bereken. Die bewegende gemiddelde parameter m is in sel C3. Vore (1) kolom (D) toon 'n voorspelling vir een periode na die toekoms. Die voorspelling interval is in sel D3. Wanneer die voorspelling interval verander word na 'n groter aantal van die getalle in die kolom vore geskuif af. Die kolom Fout (1) (e) toon die verskil tussen die waarneming en die voorspelling. Byvoorbeeld, die waarneming by die tyd 1 is 6. Die geskatte waarde uit die bewegende gemiddelde op tydstip 0 is 11.1. Die fout dan is -5,1. Die gemiddeldes en standaardafwykings Gemiddelde Afwyking (MAD) word bereken in selle E6 en E7 respectively. Moving gemiddelde en eksponensiële gladstryking modelle As 'n eerste stap in die beweging van buite gemiddelde modelle, ewekansige loop modelle, en lineêre tendens modelle, nonseasonal patrone en tendense kan wees geëkstrapoleer deur 'n bewegende-gemiddelde of glad model. Die basiese aanname agter gemiddelde en glad modelle is dat die tyd reeks is plaaslik stilstaande met 'n stadig wisselende gemiddelde. Vandaar, neem ons 'n bewegende (plaaslike) gemiddelde om die huidige waarde van die gemiddelde skat en dan gebruik dit as die voorspelling vir die nabye toekoms. Dit kan beskou word as 'n kompromie tussen die gemiddelde model en die ewekansige-stap-sonder-drif-model. Dieselfde strategie gebruik kan word om te skat en ekstrapoleer 'n plaaslike tendens. 'N bewegende gemiddelde is dikwels 'n quotsmoothedquot weergawe van die oorspronklike reeks, want kort termyn gemiddelde het die effek van gladstryking uit die knoppe in die oorspronklike reeks. Deur die aanpassing van die mate van gladstryking (die breedte van die bewegende gemiddelde), kan ons hoop om 'n soort van 'n optimale balans tussen die prestasie van die gemiddelde en die stogastiese wandeling modelle slaan. Die eenvoudigste soort gemiddelde model is die. Eenvoudige (ewe-geweeg) Moving Average: Die voorspelling vir die waarde van Y op tyd T1 wat gemaak word op tydstip t is gelyk aan die eenvoudige gemiddelde van die mees onlangse m waarnemings: (hier en elders sal ek die simbool 8220Y-hat8221 gebruik om op te staan vir 'n voorspelling van die tyd reeks Y gemaak op die vroegste moontlike voor datum deur 'n gegewe model.) Hierdie gemiddelde is gesentreer op tydperk t (M1) / 2, wat impliseer dat die skatting van die plaaslike gemiddelde sal neig om agter die werklike waarde van die plaaslike gemiddelde met sowat (M1) / 2 periodes. So, sê ons die gemiddelde ouderdom van die data in die eenvoudige bewegende gemiddelde is (M1) / 2 met betrekking tot die tydperk waarvoor die voorspelling is bereken: dit is die hoeveelheid tyd waarop voorspellings sal neig om agter draaipunte in die data. Byvoorbeeld, as jy gemiddeld die afgelope 5 waardes, sal die voorspellings wees oor 3 periodes laat in reaksie op draaipunte. Let daarop dat indien M1, die eenvoudige bewegende gemiddelde (SMA) model is soortgelyk aan die ewekansige loop model (sonder groei). As m is baie groot (vergelykbaar met die lengte van die skatting tydperk), die SMA model is gelykstaande aan die gemiddelde model. Soos met enige parameter van 'n voorspelling model, is dit gebruiklik om die waarde van k te pas ten einde die beste quotfitquot om die data, dit wil sê die kleinste voorspelling foute gemiddeld behaal. Hier is 'n voorbeeld van 'n reeks wat blykbaar ewekansige skommelinge toon om 'n stadig-wisselende gemiddelde. In die eerste plek kan probeer om dit aan te pas met 'n ewekansige loop model, wat gelykstaande is aan 'n eenvoudige bewegende gemiddelde van 1 kwartaal: Die ewekansige loop model reageer baie vinnig om veranderinge in die reeks, maar sodoende dit tel baie van die quotnoisequot in die data (die ewekansige skommelinge) asook die quotsignalquot (die plaaslike gemiddelde). As ons eerder probeer 'n eenvoudige bewegende gemiddelde van 5 terme, kry ons 'n gladder lyk stel voorspellings: Die 5 termyn eenvoudige bewegende gemiddelde opbrengste aansienlik kleiner foute as die ewekansige loop model in hierdie geval. Die gemiddelde ouderdom van die data in hierdie voorspelling is 3 ((51) / 2), sodat dit is geneig om agter draaipunte met sowat drie periodes. (Byvoorbeeld, blyk 'n afswaai het plaasgevind by tydperk 21, maar die voorspellings nie omdraai tot verskeie tydperke later.) Let daarop dat die langtermyn-voorspellings van die SMA model is 'n horisontale reguit lyn, net soos in die ewekansige loop model. So, die SMA model veronderstel dat daar geen neiging in die data. Maar, terwyl die voorspellings van die ewekansige loop model is eenvoudig gelyk aan die laaste waargenome waarde, die voorspellings van die SMA model is gelykstaande aan 'n geweegde gemiddelde van die afgelope waardes. Die vertroue perke bereken deur Stat Graphics vir die langtermyn-voorspellings van die eenvoudige bewegende gemiddelde nie groter as die vooruitskatting horison styg kry. Dit is natuurlik nie korrek Ongelukkig is daar geen onderliggende statistiese teorie wat ons vertel hoe die vertrouensintervalle behoort te brei vir hierdie model. Dit is egter nie te moeilik om empiriese ramings van die vertroue perke vir die langer-horison voorspellings te bereken. Byvoorbeeld, kan jy die opstel van 'n sigblad waarop die SMA model sal gebruik word om 2 stappe vooruit, 3 stappe vooruit, ens binne die historiese data monster voorspel. Jy kan dan bereken die monster standaardafwykings van die foute op elke voorspelling horison, en dan bou vertrouensintervalle vir langer termyn voorspellings deur optelling en aftrekking veelvoude van die toepaslike standaard afwyking. As ons probeer om 'n 9-termyn eenvoudige bewegende gemiddelde, kry ons selfs gladder voorspellings en meer van 'n sloerende uitwerking: Die gemiddelde ouderdom is nou 5 periodes ((91) / 2). As ons 'n 19-termyn bewegende gemiddelde te neem, die gemiddelde ouderdom toeneem tot 10: Let daarop dat, inderdaad, is die voorspellings nou agter draaipunte met sowat 10 periodes. Watter bedrag van smoothing is die beste vir hierdie reeks Hier is 'n tabel wat hulle dwaling statistieke vergelyk, ook met 'n 3-gemiddelde: Model C, die 5-termyn bewegende gemiddelde, lewer die laagste waarde van RMSE deur 'n klein marge oor die 3 - term en 9 termyn gemiddeldes, en hul ander statistieke is byna identies. So, onder modelle met 'n baie soortgelyke fout statistieke, kan ons kies of ons 'n bietjie meer responsiewe ingesteldheid of 'n bietjie meer gladheid in die voorspellings sou verkies. Intuïtief, moet afgelope data verdiskonteer in 'n meer geleidelike mode - byvoorbeeld, die mees onlangse waarneming moet 'n bietjie meer gewig kry as 2 mees onlangse, en die 2de mees onlangse moet 'n bietjie meer gewig as die 3 mees onlangse kry, en so aan. Laat 945 dui n quotsmoothing constantquot ( 'n getal tussen 0 en 1). Een manier om die model te skryf is om 'n reeks L dat die huidige vlak (dit wil sê die plaaslike gemiddelde waarde) van die reeks verteenwoordig as geraamde van data tot op hede te definieer. Die waarde van L op tydstip t is rekursief bereken uit sy eie vorige waarde soos volg: Dus, die huidige stryk waarde is 'n interpolasie tussen die vorige stryk waarde en die huidige waarneming, waar 945 kontroles die nabyheid van die geïnterpoleerde waarde tot die mees onlangse waarneming. Die voorspelling vir die volgende tydperk is eenvoudig die huidige stryk waarde: anders gestel ons kan die volgende voorspelling direk in terme van vorige voorspellings en vorige waarnemings uit te druk, in enige van die volgende ekwivalent weergawes. In die eerste weergawe, die voorspelling is 'n interpolasie tussen vorige skatting en vorige waarneming: In die tweede weergawe, is die volgende voorspelling verkry deur die aanpassing van die vorige skatting in die rigting van die vorige fout deur 'n breukdeel bedrag 945. is die fout gemaak by tyd t. In die derde weergawe, die voorspelling is 'n eksponensieel geweeg (dit wil sê afslag) bewegende gemiddelde met afslag faktor 1- 945: Die interpolasie weergawe van die voorspelling formule is die eenvoudigste om te gebruik as jy die uitvoering van die model op 'n spreadsheet: dit pas in 'n enkele sel en bevat selverwysings verwys na die vorige skatting, die vorige waarneming, en die sel waar die waarde van 945 gestoor. Let daarop dat indien 945 1, die SES model is gelykstaande aan 'n ewekansige loop model (sonder groei). As 945 0, die SES model is gelykstaande aan die gemiddelde model, met die veronderstelling dat die eerste stryk waarde gelyk aan die gemiddelde is ingestel. (Terug na bo.) Die gemiddelde ouderdom van die data in die eenvoudige eksponensiële-glad voorspelling is 1/945 relatief tot die tydperk waarvoor die voorspelling is bereken. (Dit is nie veronderstel duidelik te wees, maar dit kan maklik aangetoon deur die evaluering van 'n oneindige reeks.) Dus, die eenvoudige bewegende gemiddelde voorspelling is geneig om agter draaipunte met sowat 1/945 periodes. Byvoorbeeld, wanneer 945 0.5 die lag is 2 periodes wanneer 945 0.2 die lag is 5 periodes wanneer 945 0.1 die lag is 10 periodes, en so aan. Vir 'n gegewe gemiddelde ouderdom (bv bedrag van lag), die eenvoudige eksponensiële gladstryking (SES) voorspelling is 'n bietjie beter as die eenvoudige bewegende gemiddelde (SMA) voorspel, want dit plaas relatief meer gewig op die mees onlangse waarneming --i. e. dit is 'n bietjie meer quotresponsivequot om veranderinge voorkom in die onlangse verlede. Byvoorbeeld, 'n SMA model met 9 terme en 'n SES model met 945 0.2 beide het 'n gemiddelde ouderdom van 5 vir die data in hul voorspellings, maar die SES model plaas meer gewig op die laaste 3 waardes as wel die SMA model en by die Terselfdertyd is dit doesn8217t heeltemal 8220forget8221 oor waardes meer as 9 tydperke oud was, soos getoon in hierdie grafiek: nog 'n belangrike voordeel van die SES model die SMA model is dat die SES model maak gebruik van 'smoothing parameter wat voortdurend veranderlike, so dit kan maklik new deur die gebruik van 'n quotsolverquot algoritme om die gemiddelde minimum te beperk kwadraat fout. Die optimale waarde van 945 in die SES model vir hierdie reeks blyk te wees 0,2961, soos hier gewys word: die gemiddelde ouderdom van die data in hierdie voorspelling is 1 / 0,2961 3.4 tydperke, wat soortgelyk is aan dié van 'n 6-termyn eenvoudige bewegende gemiddelde. Die langtermyn-voorspellings van die SES model is 'n horisontale reguit lyn. soos in die SMA model en die ewekansige loop model sonder groei. Let egter daarop dat die vertrouensintervalle bereken deur Stat Graphics nou divergeer in 'n redelike aantreklike mode, en dat hulle aansienlik nouer as die vertrouensintervalle vir die ewekansige loop model. Die SES model veronderstel dat die reeks is 'n bietjie quotmore predictablequot as wel die ewekansige loop model. 'N SES model is eintlik 'n spesiale geval van 'n ARIMA model. sodat die statistiese teorie van ARIMA modelle bied 'n goeie basis vir die berekening van vertrouensintervalle vir die SES model. In die besonder, 'n SES model is 'n ARIMA model met een nonseasonal verskil, 'n MA (1) termyn, en geen konstante term. andersins bekend as 'n quotARIMA (0,1,1) model sonder constantquot. Die MA (1) koëffisiënt in die ARIMA model stem ooreen met die hoeveelheid 1- 945 in die SES model. Byvoorbeeld, as jy 'n ARIMA (0,1,1) model inpas sonder konstante om die reeks te ontleed hier, die beraamde MA (1) koëffisiënt blyk te wees 0,7029, wat byna presies 'n minus 0,2961. Dit is moontlik om die aanname van 'n nie-nul konstante lineêre tendens voeg by 'n SES model. Om dit te doen, net 'n ARIMA model met een nonseasonal verskil en 'n MA (1) termyn met 'n konstante, dit wil sê 'n ARIMA (0,1,1) model met 'n konstante spesifiseer. Die langtermyn-voorspellings sal dan 'n tendens wat gelyk is aan die gemiddelde tendens waargeneem oor die hele skatting tydperk is. Jy kan dit nie doen in samewerking met seisoenale aanpassing, omdat die aanpassing opsies seisoenale is afgeskakel wanneer die model tipe is ingestel op ARIMA. Jy kan egter 'n konstante langtermyn eksponensiële tendens om 'n eenvoudige eksponensiële gladstryking model voeg (met of sonder seisoenale aanpassing) deur gebruik te maak van die opsie inflasie-aanpassing in die vooruitskatting prosedure. Die toepaslike quotinflationquot (persentasie groei) koers per periode kan geskat word as die helling koëffisiënt in 'n lineêre tendens model toegerus om die data in samewerking met 'n natuurlike logaritme transformasie, of dit kan op grond van ander, onafhanklike inligting oor die langtermyn groeivooruitsigte . (Terug na bo.) Browns Lineêre (dws dubbel) Eksponensiële glad die SMA modelle en SES modelle aanvaar dat daar geen tendens van enige aard in die data (wat gewoonlik OK of ten minste nie-te-sleg vir 1- stap-ahead voorspellings wanneer die data is relatief raserig), en hulle kan verander word om 'n konstante lineêre tendens inkorporeer soos hierbo getoon. Wat van kort termyn tendense As 'n reeks vertoon 'n wisselende koers van groei of 'n sikliese patroon wat uitstaan ​​duidelik teen die geraas, en as daar 'n behoefte aan meer as 1 tydperk wat voorlê voorspel, dan skatting van 'n plaaslike tendens kan ook wees n probleem. Die eenvoudige eksponensiële gladstryking model veralgemeen kan word na 'n lineêre eksponensiële gladstryking (LES) model wat plaaslike begrotings van beide vlak en tendens bere te kry. Die eenvoudigste-time wisselende tendens model is Browns lineêr eksponensiële gladstryking model, wat twee verskillende reëlmatige reeks wat op verskillende punte gesentreer in die tyd gebruik. Die vooruitskatting formule is gebaseer op 'n ekstrapolasie van 'n streep deur die twee sentrums. ( 'N meer gesofistikeerde weergawe van hierdie model, Holt8217s, word hieronder bespreek.) Die algebraïese vorm van Brown8217s lineêr eksponensiële gladstryking model, soos dié van die eenvoudige eksponensiële gladstryking model, uitgedruk kan word in 'n aantal verskillende maar ekwivalente vorms. Die quotstandardquot vorm van hierdie model word gewoonlik uitgedruk as volg: Laat S dui die enkel-stryk reeks verkry deur die toepassing van eenvoudige eksponensiële gladstryking om reeks Y. Dit is, is die waarde van S op tydperk t gegee word deur: (Onthou dat, onder eenvoudige eksponensiële gladstryking, dit sou die voorspelling vir Y by tydperk T1 wees) Dan Squot dui die dubbel-stryk reeks verkry deur die toepassing van eenvoudige eksponensiële gladstryking (met behulp van dieselfde 945) tot reeks S:. ten slotte, die voorspelling vir Y tk. vir enige kgt1, word gegee deur: Dit lewer e 1 0 (dit wil sê kul n bietjie, en laat die eerste skatting gelyk wees aan die werklike eerste waarneming), en e 2 Y 2 8211 Y 1. waarna voorspellings gegenereer met behulp van die vergelyking hierbo. Dit gee dieselfde toegerus waardes as die formule gebaseer op S en S indien laasgenoemde is begin met behulp van S 1 S 1 Y 1. Hierdie weergawe van die model gebruik word op die volgende bladsy wat 'n kombinasie van eksponensiële gladstryking met seisoenale aanpassing illustreer. Holt8217s Lineêre Eksponensiële Smoothing Brown8217s LES model bere plaaslike begrotings van vlak en tendens deur glad die onlangse data, maar die feit dat dit nie so met 'n enkele glad parameter plaas 'n beperking op die data patrone wat dit in staat is om aan te pas: die vlak en tendens word nie toegelaat om wissel op onafhanklike tariewe. Holt8217s LES model spreek hierdie kwessie deur die insluiting van twee glad konstantes, een vir die vlak en een vir die tendens. Te eniger tyd t, soos in Brown8217s model, die daar is 'n skatting L t van die plaaslike vlak en 'n skatting T t van die plaaslike tendens. Hier is hulle rekursief bereken vanaf die waarde van Y op tydstip t en die vorige raming van die vlak en tendens waargeneem deur twee vergelykings wat eksponensiële gladstryking afsonderlik van toepassing op hulle. As die geskatte vlak en tendens op tydstip t-1 is L t82091 en T t-1. onderskeidelik, dan is die voorspelling vir Y tshy wat op tydstip t-1 sal gemaak is gelyk aan L t-1 T T-1. Wanneer die werklike waarde is waargeneem, is die opgedateer skatting van die vlak rekursief bereken deur interpol tussen Y tshy en sy voorspelling, L t-1 T T-1, die gebruik van gewigte van 945 en 1- 945. Die verandering in die geskatte vlak, naamlik L t 8209 L t82091. geïnterpreteer kan word as 'n lawaaierige meting van die tendens op tydstip t. Die opgedateer skatting van die tendens is dan rekursief bereken deur interpol tussen L t 8209 L t82091 en die vorige skatting van die tendens, T t-1. die gebruik van gewigte van 946 en 1-946: Die interpretasie van die tendens-glad konstante 946 is soortgelyk aan dié van die vlak glad konstante 945. Models met klein waardes van 946 aanvaar dat die tendens verander net baie stadig met verloop van tyd, terwyl modelle met groter 946 aanvaar dat dit vinniger is om te verander. 'N Model met 'n groot 946 is van mening dat die verre toekoms is baie onseker, omdat foute in die tendens-skatting word baie belangrik wanneer voorspel meer as een tydperk wat voorlê. (Terug na bo.) Die smoothing konstantes 945 en 946 kan in die gewone manier word beraam deur die vermindering van die gemiddelde kwadraat fout van die 1-stap-ahead voorspellings. Wanneer dit in Stat Graphics gedoen, die skattings uitdraai om te wees 945 0.3048 en 946 0,008. Die baie klein waarde van 946 beteken dat die model veronderstel baie min verandering in die tendens van een tydperk na die volgende, so basies hierdie model is besig om 'n langtermyn-tendens skat. Volgens analogie met die idee van die gemiddelde ouderdom van die data wat gebruik word in die skatte van die plaaslike vlak van die reeks, die gemiddelde ouderdom van die data wat gebruik word in die skatte van die plaaslike tendens is eweredig aan 1/946, hoewel nie presies gelyk aan Dit. In hierdie geval is dit blyk 1 / 0,006 125. Dit isn8217t n baie presiese aantal sover die akkuraatheid van die skatting van 946 isn8217t regtig 3 desimale plekke te wees, maar dit is van dieselfde algemene orde van grootte as die steekproefgrootte van 100 , so hierdie model is gemiddeld oor 'n hele klomp van die geskiedenis in die skatte van die tendens. Die voorspelling plot hieronder toon dat die LES model skat 'n effens groter plaaslike tendens aan die einde van die reeks as die konstante tendens geskat in die SEStrend model. Ook waarvan die beraamde waarde van 945 is byna identies aan die een wat deur die pas van die SES model met of sonder tendens, so dit is amper dieselfde model. Nou, doen hierdie lyk redelike voorspellings vir 'n model wat veronderstel is om te beraming 'n plaaslike tendens As jy hierdie plot 8220eyeball8221, dit lyk asof die plaaslike tendens afwaarts gedraai aan die einde van die reeks: Wat het die parameters van hierdie model gebeur is beraam deur die vermindering van die kwadraat fout van 1-stap-ahead voorspellings, nie langer termyn voorspellings, in welke geval die tendens 'n groot verskil doesn8217t maak. As alles wat jy is op soek na is 1-stap-ahead foute, is jy nie sien die groter prentjie van tendense oor (sê) 10 of 20 periodes. Ten einde hierdie model meer in harmonie te kry met ons oogbal ekstrapolasie van die data, kan ons met die hand die tendens-glad konstante pas sodat dit 'n korter basislyn vir tendens skatting. Byvoorbeeld, as ons kies om te stel 946 0.1, dan is die gemiddelde ouderdom van die gebruik in die skatte van die plaaslike tendens data is 10 periodes, wat beteken dat ons die gemiddeld van die tendens oor daardie laaste 20 periodes of so. Here8217s wat die voorspelling plot lyk asof ons '946 0.1 terwyl 945 0.3. Dit lyk intuïtief redelike vir hierdie reeks, maar dit is waarskynlik gevaarlik om hierdie tendens te ekstrapoleer nie meer as 10 periodes in die toekoms. Wat van die fout statistieke Hier is 'n model vergelyking vir die twee modelle hierbo asook drie SES modelle getoon. Die optimale waarde van 945.Vir die SES model is ongeveer 0,3, maar soortgelyke resultate (met 'n bietjie meer of minder 'n responsiewe ingesteldheid, onderskeidelik) verkry met 0,5 en 0,2. (A) Holts lineêre exp. glad met alfa 0,3048 en beta 0,008 (B) Holts lineêre exp. glad met alfa 0,3 en beta 0,1 (C) Eenvoudige eksponensiële gladstryking met alfa 0,5 (D) Eenvoudige eksponensiële gladstryking met alfa 0,3 (E) Eenvoudige eksponensiële gladstryking met alfa 0,2 hul statistieke is byna identies, so ons can8217t regtig die keuse te maak op die basis van 1-stap-ahead voorspelling foute binne die data monster. Ons het om terug te val op ander oorwegings. As ons glo dat dit sinvol om die huidige tendens skatting van wat die afgelope 20 periodes of so gebeur baseer, kan ons 'n saak vir die LES model met 945 0.3 en 946 0.1 maak. As ons wil hê agnostikus te wees oor die vraag of daar 'n plaaslike tendens, dan een van die SES modelle makliker om te verduidelik kan wees en sou ook vir meer middel-of-the-road voorspellings vir die volgende 5 of 10 periodes. (Terug na bo.) Watter tipe tendens-ekstrapolasie die beste: horisontale of lineêre empiriese bewyse dui daarop dat, indien die data is reeds aangepas (indien nodig) vir inflasie, dan is dit dalk onverstandig om kort termyn lineêre ekstrapoleer wees tendense baie ver in die toekoms. Tendense duidelik vandag mag verslap in die toekoms as gevolg van uiteenlopende oorsake soos produk veroudering, toenemende mededinging en sikliese afswaai of opwaartse fases in 'n bedryf. Om hierdie rede, eenvoudige eksponensiële gladstryking voer dikwels beter out-of-monster as wat dit andersins word verwag, ten spyte van sy quotnaivequot horisontale tendens ekstrapolasie. Gedempte tendens veranderinge van die lineêre eksponensiële gladstryking model word ook dikwels gebruik in die praktyk om 'n aantekening van konserwatisme in te voer in die tendens projeksies. Die gedempte-tendens LES model geïmplementeer kan word as 'n spesiale geval van 'n ARIMA model, in die besonder, 'n ARIMA (1,1,2) model. Dit is moontlik om vertrouensintervalle rondom langtermyn voorspellings wat deur eksponensiële gladstryking modelle bereken deur die oorweging van hulle as spesiale gevalle van ARIMA modelle. (Pasop: nie alle sagteware bereken vertrouensintervalle vir hierdie modelle korrek.) Die breedte van die vertrouensintervalle hang af van (i) die RMS fout van die model, (ii) die tipe glad (eenvoudige of lineêr) (iii) die waarde (s) van die smoothing konstante (s) en (iv) die aantal periodes voor jy voorspel. In die algemeen, die tussenposes versprei vinniger as 945 kry groter in die SES model en hulle uitgebrei, sodat baie vinniger as lineêre, eerder as eenvoudige smoothing gebruik. Hierdie onderwerp word verder in die ARIMA modelle deel van die notas bespreek. (Terug na bo.)


No comments:

Post a Comment